Giáo Dục

Cách chứng minh các điểm (4 điểm) cùng thuộc một đường tròn – Toán 9 chuyên đề

Chứng minh các điểm (thường là 4 điểm) cùng thuộc một đường tròn là dạng bài tập phổ biến thường gặp trong các bài toán liên quan đến tứ giác và đường tròn.

Vậy cách chứng minh các điểm (4 điểm) thuộc được tròn như thế nào? có mấy cách chứng minh 4 điểm cùng thuộc một đường tròn? chúng ta cùng tìm hiểu qua bài viết dưới đây nhé.

Bạn đang xem bài: Cách chứng minh các điểm (4 điểm) cùng thuộc một đường tròn – Toán 9 chuyên đề

° Phương pháp chứng minh các điểm thuộc một đường tròn

* Cách 1: Chứng minh các điểm đó cùng cách đều một điểm O cố định. Khi đó các điểm đã cho cùng thuộc đường tròn tâm O.

* Cách 2: Sử dụng tứ giác nội tiếp. Chẳng hạn để chứng minh 5 điểm A, B, C, D, E cùng thuộc một đường tròn ta chứng minh ABCD, ABCE là tứ giác nội tiếp cùng 1 đường tròn tâm O.

Dưới đây, chúng ta cùng tham khảo một số ví dụ minh họa cách chứng mình 4 điểm cùng thuộc đường tròn.

* Ví dụ 1: Cho tam giác ABC vuông tại A, đường cao AH. Từ M là điểm bất kì trên cạnh BC kẻ MD ⊥ AB, ME ⊥ AC. Chứng minh 5 điểm A, D, M, H, E cùng nằm trên một đường tròn.

* Lời giải:

– Theo bài ra, có có hình sau:
cach chung minh cac diem deu thuoc mot duong tron vd1 toan 9

Xét tam giác vuông ADM có cạnh huyền AM

Xét tam giác vuông AEM có cạnh huyền AM

Và tam giác vuông AHM có cạnh huyền AM

Các tam giác này đều có chung cạnh huyền AM nên 3 đỉnh góc vuông nằm trên đường tròn đường kính AM có tâm là trung điểm của AM.

Vậy 5 điểm A, D, M, H, E cùng nằm trên một đường tròn.

* Ví dụ 2: Cho tam giác ABC vuông tại A gọi D là điểm đối xứng với A qua cạnh BC. Chứng minh 4 điểm A, B, C, D cùng thuộc một đường tròn.

* Lời giải:

– Ta có hình vẽ như sau:

cach chung minh cac diem deu thuoc mot duong tron vd2 toan 9

Vì D đối xứng với  A qua BC, B đối xứng với B qua BC, C đối xứng với C qua BC nên 1652696470lyndd4pujd đối xứng với góc 1652696472c69s3gj5vz qua BC.

Suy ra ∠BDC = ∠BAC = 900

Xét tam giác vuông BAC và BDC có chung cạnh huyền BC nên hai đỉnh góc vuông A, D nằm trên đường tròn đường kính BC, có tâm là trung điểm của cạnh huyền BC.

Vậy 4 điểm A, B, C, D cùng nằm trên một đường tròn.

* Ví dụ 3: Cho tam giác ABC vuông tại A. Trên AC lấy điểm D. Hình chiếu của D lên BC là E, điểm đối xứng của E qua BD là F. Chứng minh 5 điểm A, B, E, D, F cùng nằm trên một đường tròn. Xác định tâm O của đường tròn đó.

* Lời giải:

– Ta có hình vẽ như sau:

cach chung minh cac diem deu thuoc mot duong tron vd3 toan 9– Theo giả thuyết, DE ⊥ BC nên ∠BEB = 900

– Vì E và F đối xứng với nhau qua BD nên BD là đường trung trực của đoạn thẳng EF nên suy ra:

 BF = BE và DF = DE

Suy ra: ΔBFD = ΔBED (c-c-c)

Suy ra: ∠BFD = ∠BEB = 900

– Gọi O là trung điểm của BD.

– Xét tam giác vuông ABD vuông tại A có AO là trung tuyến nên:

 AO = ½BD = OB = OD   (1)

– Xét tam giác vuông BDE vuông tại E có OE là trung tuyến nên:

 EO = ½BD = OB = OD   (2)

– Xét tam giác vuông BFD vuông tại F có OF là trung tuyến nên:

 FO = ½BD = OB = OD   (3)

Từ (1), (2) và (3) suy ra: OA = OB = OD = OE = OF.

Vậy 5 điểm A, B, E, D, F cùng nằm trên một đường tròn tâm O với O là trung điểm của BC.

Hy vọng với bài viết Cách chứng minh các điểm (4 điểm) cùng thuộc một đường tròn ở nội dung toán lớp 9 trên của TH Văn Thủygiúp các em giải các bài tập dạng này một cách dễ dàng. Mọi góp ý và thắc mắc các em hãy để lại nhận xét dưới bài viết để Hay Học Hỏi ghi nhận và hỗ trợ, chúc các em học tốt.

Trích nguồn: TH Văn Thủy
Danh mục: Giáo Dục

Lê Thị Thanh Loan

Cô giáo Lê Thị Thanh Loan tốt nghiệp trường Đại học Sư phạm Hà Nội. Hiện nay, Cô đang giảng dạy tại trường Trường tiểu học Văn Thủy
Back to top button